Extract ladder summary
extract_ladder_summary.RdExtract a table summarizing the ladder models
Details
The ladder peaks are assigned using a custom algorithm that maximizes the fit of detected ladder peaks and given base-pair sizes. This function summarizes the R-squared values of these individual correlations.
Examples
fsa_list <- lapply(cell_line_fsa_list, function(x) x$clone())
# import data with read_fsa() to generate an equivalent list to cell_line_fsa_list
test_fragments <- trace(fsa_list, grouped = TRUE, metadata_data.frame = metadata)
#> Finding ladders
#>
|
| | 0%
|
|==== | 5%
|
|======= | 11%
|
|=========== | 16%
|
|=============== | 21%
|
|================== | 26%
|
|====================== | 32%
|
|========================== | 37%
|
|============================= | 42%
|
|================================= | 47%
|
|===================================== | 53%
|
|========================================= | 58%
|
|============================================ | 63%
|
|================================================ | 68%
|
|==================================================== | 74%
|
|======================================================= | 79%
|
|=========================================================== | 84%
|
|=============================================================== | 89%
|
|================================================================== | 95%
|
|======================================================================| 100%
#> Finding fragments
#>
|
| | 0%
|
|==== | 5%
|
|======= | 11%
|
|=========== | 16%
|
|=============== | 21%
|
|================== | 26%
|
|====================== | 32%
|
|========================== | 37%
|
|============================= | 42%
|
|================================= | 47%
|
|===================================== | 53%
|
|========================================= | 58%
|
|============================================ | 63%
|
|================================================ | 68%
|
|==================================================== | 74%
|
|======================================================= | 79%
|
|=========================================================== | 84%
|
|=============================================================== | 89%
|
|================================================================== | 95%
|
|======================================================================| 100%
#> Finding alleles
#> Calling repeats
#> Assigning index peaks
extract_ladder_summary(test_fragments, sort = TRUE)
#> unique_id avg_rsq min_rsq
#> S-21-211_20220630.fsa S-21-211_20220630.fsa 0.9995133 0.9987599
#> S-21-212_20220630.fsa S-21-212_20220630.fsa 0.9995515 0.9988479
#> 20230413_F01.fsa 20230413_F01.fsa 0.9995721 0.9989598
#> 20230413_H07.fsa 20230413_H07.fsa 0.9995995 0.9988479
#> 20230413_F02.fsa 20230413_F02.fsa 0.9996156 0.9989598
#> 20230413_C01.fsa 20230413_C01.fsa 0.9996193 0.9988872
#> 20230413_A08.fsa 20230413_A08.fsa 0.9996200 0.9986115
#> 20230413_G09.fsa 20230413_G09.fsa 0.9996218 0.9989546
#> 20230413_G08.fsa 20230413_G08.fsa 0.9996224 0.9986115
#> 20230413_C02.fsa 20230413_C02.fsa 0.9996303 0.9989546
#> 20230413_D07.fsa 20230413_D07.fsa 0.9996312 0.9986115
#> 20230413_H08.fsa 20230413_H08.fsa 0.9996397 0.9989546
#> 20230413_G07.fsa 20230413_G07.fsa 0.9996454 0.9989546
#> 20230413_A09.fsa 20230413_A09.fsa 0.9996507 0.9989546
#> 20230413_F03.fsa 20230413_F03.fsa 0.9996514 0.9989261
#> 20230413_D08.fsa 20230413_D08.fsa 0.9996529 0.9986115
#> 20230413_C03.fsa 20230413_C03.fsa 0.9996544 0.9989261
#> 20230413_A07.fsa 20230413_A07.fsa 0.9996898 0.9990775
#> 20230413_D09.fsa 20230413_D09.fsa 0.9997005 0.9990775